Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, many researchers have proposed new models for synaptic plasticity in the brain based on principles of machine learning. The central motivation has been the development of learning algorithms that are able to learn difficult tasks while qualifying as "biologically plausible". However, the concept of a biologically plausible learning algorithm is only heuristically defined as an algorithm that is potentially implementable by biological neural networks. Further, claims that neural circuits could implement any given algorithm typically rest on an amorphous concept of "locality" (both in space and time). As a result, it is unclear what many proposed local learning algorithms actually predict biologically, and which of these are consequently good candidates for experimental investigation. Here, we address this lack of clarity by proposing formal and operational definitions of locality. Specifically, we define different classes of locality, each of which makes clear what quantities cannot be included in a learning rule if an algorithm is to qualify as local with respect to a given (biological) constraint. We subsequently use this framework to distill testable predictions from various classes of biologically plausible synaptic plasticity models that are robust to arbitrary choices about neural network architecture. Therefore, our framework can be used to guide claims of biological plausibility and to identify potential means of experimentally falsifying a proposed learning algorithm for the brain.more » « less
-
Biological agents do not have infinite resources to learn new things. For this reason, a central aspect of human learning is the ability to recycle previously acquired knowledge in a way that allows for faster, less resource-intensive acquisition of new skills. In spite of that, how neural networks in the brain leverage existing knowledge to learn new computations is not well understood. In this work, we study this question in artificial recurrent neural networks (RNNs) trained on a corpus of commonly used neuroscience tasks. Combining brain-inspired inductive biases we call functional and structural, we propose a system that learns new tasks by building on top of pre-trained latent dynamics organised into separate recurrent modules. These modules, acting as prior knowledge acquired previously through evolution or development, are pre-trained on the statistics of the full corpus of tasks so as to be independent and maximally informative. The resulting model, we call a Modular Latent Primitives (MoLaP) network, allows for learning multiple tasks while keeping parameter counts, and updates, low. We also show that the skills acquired with our approach are more robust to a broad range of perturbations compared to those acquired with other multi-task learning strategies, and that generalisation to new tasks is facilitated. This work offers a new perspective on achieving efficient multi-task learning in the brain, illustrating the benefits of leveraging pre-trained latent dynamical primitives.more » « less
An official website of the United States government

Full Text Available